Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 312
Filter
Add more filters










Publication year range
1.
Chemphyschem ; : e202400330, 2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38676545

ABSTRACT

Copper is widely used in everyday life and industrial production because of its good electrical and thermal conductivity. To overcome copper oxidation and maintain its good physical properties, small organic molecules adsorbed on the surface of copper make a passivated layer to further avoid copper corrosion. In this work, we have investigated thioglycolic acid (TGA, another name is mercaptoacetic acid) adsorbed on copper surfaces by using density functional theory (DFT) calculations and a periodical slab model. We first get five stable adsorption structures, and the binding interaction between TGA and Cu(111) surfaces by using density of states (DOS), indicating that the most stable configuration adopts a triple-end binding model. Then, we analyze the vibrational Raman spectra of TGA adsorbed on the Cu(111) surface and make vibrational assignments according to the vibrational vectors. Finally, we explore the temperature effect of the thermodynamically Gibbs free energy of TGA on the Cu(111) surface and the antioxidant ability of the small organic molecular layer of copper oxidation on the copper surface. Our calculated results further provide evidences to interpret the stability of adsorption structures and antioxidant properties of copper.

2.
Angew Chem Int Ed Engl ; : e202405379, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38639181

ABSTRACT

Due to the superior catalytic activity and efficient utilization of noble metals, nanocatalysts are extensively used in the modern industrial production of chemicals. The surface structures of these materials are significantly influenced by reactive adsorbates, leading to dynamic behavior under experimental conditions. The dynamic nature poses significant challenges in studying the  structure-activity relations of catalysts. Herein, we unveil an anomalous entropic effect on catalysis via surface pre-melting of nanoclusters through machine learning accelerated molecular dynamics and free energy calculation. We find that due to the pre-melting of shell atoms, there exists a non-linear variation in the catalytic activity of the nanoclusters with temperature. Consequently, two notable changes in catalyst activity occur at the respective temperatures of melting for the shell and core atoms. We further study the nanoclusters with surface point defects, i.e. vacancy and ad-atom, and observe significant decrease in the surface melting temperatures of the nanoclusters, enabling the reaction to take place under more favorable and milder conditions. These findings not only provide novel insights into dynamic catalysis of nanoclusters  but also offer new understanding of the role of point defects in catalytic processes.

3.
Anal Chem ; 96(15): 5968-5975, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38577912

ABSTRACT

Surface-enhanced Raman spectroscopy (SERS) is a powerful tool for highly sensitive qualitative and quantitative analyses of trace targets. However, sensitive SERS detection can only be facilitated with a suitable sample pretreatment in fields related to trace amounts for food safety and clinical diagnosis. Currently, the sample pretreatment for SERS detection is normally borrowed and improved from the ones in the lab, which yields a high recovery but is tedious and time-consuming. Rapid detection of trace targets in a complex environment is still a considerable issue for SERS detection. Herein, we proposed a liquid-liquid extraction method coupled with a back-extraction method for sample pretreatment based on the pH-sensitive reversible phase transition of the weak organic acids and bases, where the lowest detectable concentrations were identical before and after the pretreatment process. The sensitive (µg L-1 level) and rapid (within 5 min) SERS detection of either koumine, a weak base, or celastrol, a weak acid, was demonstrated in different drinking water samples and beverages. Furthermore, target generality was demonstrated for a variety of weak acids and bases (2 < pKa < 12), and the hydrophilicity/hydrophobicity of the target determines the pretreatment efficiency. Therefore, the LLE-BE coupled SERS was developed as an easy, rapid, and low-cost tool for the trace detection of the two types of targets in simple matrices, which paved the way toward trace targets in complex matrices.


Subject(s)
Drinking Water , Spectrum Analysis, Raman , Spectrum Analysis, Raman/methods , Beverages , Liquid-Liquid Extraction
4.
J Am Chem Soc ; 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38683738

ABSTRACT

Palladium hydrides (PdHx) are pivotal in both fundamental research and practical applications across a wide spectrum. PdHx nanocrystals, synthesized by heating in dimethylformamide (DMF), exhibit remarkable stability, granting them widespread applications in the field of electrocatalysis. However, this stability appears inconsistent with their metastable nature. The substantial challenges in characterizing nanoscale structures contribute to the limited understanding of this anomalous phenomenon. Here, through a series of well-conceived experimental designs and advanced characterization techniques, including aberration-corrected scanning transmission electron microscopy (AC-STEM), in situ X-ray diffraction (XRD), and time-of-flight secondary ion mass spectrometry (TOF-SIMS), we have uncovered evidence that indicates the presence of C and N within the lattice of Pd (PdCxNy), rather than H (PdHx). By combining theoretical calculations, we have thoroughly studied the potential configurations and thermodynamic stability of PdCxNy, demonstrating a 2.5:1 ratio of C to N infiltration into the Pd lattice. Furthermore, we successfully modulated the electronic structure of Pd nanocrystals through C and N doping, enhancing their catalytic activity in methanol oxidation reactions. This breakthrough provides a new perspective on the structure and composition of Pd-based nanocrystals infused with light elements, paving the way for the development of advanced catalytic materials in the future.

5.
Anal Chem ; 96(17): 6550-6557, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38642045

ABSTRACT

There is growing interest in developing a high-performance self-supervised denoising algorithm for real-time chemical hyperspectral imaging. With a good understanding of the working function of the zero-shot Noise2Noise-based denoising algorithm, we developed a self-supervised Signal2Signal (S2S) algorithm for real-time denoising with a single chemical hyperspectral image. Owing to the accurate distinction and capture of the weak signal from the random fluctuating noise, S2S displays excellent denoising performance, even for the hyperspectral image with a spectral signal-to-noise ratio (SNR) as low as 1.12. Under this condition, both the image clarity and the spatial resolution could be significantly improved and present an almost identical pattern with a spectral SNR of 7.87. The feasibility of real-time denoising during imaging was well demonstrated, and S2S was applied to monitor the photoinduced exfoliation of transition metal dichalcogenide, which is hard to accomplish by confocal Raman spectroscopy. In general, the real-time denoising capability of S2S offers an easy way toward in situ/in vivo/operando research with much improved spatial and temporal resolution. S2S is open-source at https://github.com/3331822w/Signal2signal and will be accessible online at https://ramancloud.xmu.edu.cn/tutorial.

6.
Nat Mater ; 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38589543

ABSTRACT

Unconventional 1T'-phase transition metal dichalcogenides (TMDs) have aroused tremendous research interest due to their unique phase-dependent physicochemical properties and applications. However, due to the metastable nature of 1T'-TMDs, the controlled synthesis of 1T'-TMD monolayers (MLs) with high phase purity and stability still remains a challenge. Here we report that 4H-Au nanowires (NWs), when used as templates, can induce the quasi-epitaxial growth of high-phase-purity and stable 1T'-TMD MLs, including WS2, WSe2, MoS2 and MoSe2, via a facile and rapid wet-chemical method. The as-synthesized 4H-Au@1T'-TMD core-shell NWs can be used for ultrasensitive surface-enhanced Raman scattering (SERS) detection. For instance, the 4H-Au@1T'-WS2 NWs have achieved attomole-level SERS detections of Rhodamine 6G and a variety of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike proteins. This work provides insights into the preparation of high-phase-purity and stable 1T'-TMD MLs on metal substrates or templates, showing great potential in various promising applications.

7.
Angew Chem Int Ed Engl ; 63(20): e202403114, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38488787

ABSTRACT

The conversion of methane under ambient conditions has attracted significant attention. Although advancements have been made using active oxygen species from photo- and electro- chemical processes, challenges such as complex catalyst design, costly oxidants, and unwanted byproducts remain. This study exploits the concept of contact-electro-catalysis, initiating chemical reactions through charge exchange at a solid-liquid interface, to report a novel process for directly converting methane under ambient conditions. Utilizing the electrification of commercially available Fluorinated Ethylene Propylene (FEP) with water under ultrasound, we demonstrate how this interaction promote the activation of methane and oxygen molecules. Our results show that the yield of HCHO and CH3OH can reach 467.5 and 151.2 µmol ⋅ gcat -1, respectively. We utilized electron paramagnetic resonance (EPR) to confirm the evolution of hydroxyl radicals (⋅OH) and superoxide radicals (⋅OOH). Isotope mass spectrometry (MS) was employed to analyze the elemental origin of CH3OH, which can be further oxidized to HCHO. Additionally, we conducted density functional theory (DFT) simulations to assess the reaction energies of FEP with H2O, O2, and CH4 under these conditions. The implications of this methodology, with its potential applicability to a wider array of gas-phase catalytic reactions, underscore a significant advance in catalysis.

8.
Chem Soc Rev ; 53(7): 3579-3605, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38421335

ABSTRACT

Sixty years ago, Reddy, Devanatan, and Bockris performed the first in situ electrochemical ellipsometry experiment, which ushered in a new era in the study of electrochemistry, using optical spectroscopy. After six decades of development, electrochemical optical spectroscopy, particularly electrochemical vibrational spectroscopy, has advanced from a phase of immaturity with few methods and limited applications to a phase of maturity with excellent substrate generality and significantly improved resolutions. Here, we divide the development of electrochemical optical spectroscopy into four phases, focusing on the proof-of-concept of different electrochemical optical spectroscopy studies, the emergence of plasmonic enhancement-based electrochemical optical spectroscopic (in particular vibrational spectroscopic) methods, the realization of electrochemical vibrational spectroscopy on well-defined surfaces, and the efforts to achieve operando spectroelectrochemical applications. Finally, we discuss the future development trend of electrochemical optical spectroscopy, as well as examples of new methodology and research paradigms for operando spectroelectrochemistry.

9.
Anal Chem ; 96(10): 4086-4092, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38412039

ABSTRACT

Denoising is a necessary step in image analysis to extract weak signals, especially those hardly identified by the naked eye. Unlike the data-driven deep-learning denoising algorithms relying on a clean image as the reference, Noise2Noise (N2N) was able to denoise the noise image, providing sufficiently noise images with the same subject but randomly distributed noise. Further, by introducing data augmentation to create a big data set and regularization to prevent model overfitting, zero-shot N2N-based denoising was proposed in which only a single noisy image was needed. Although various N2N-based denoising algorithms have been developed with high performance, their complicated black box operation prevented the lightweight. Therefore, to reveal the working function of the zero-shot N2N-based algorithm, we proposed a lightweight Peak2Peak algorithm (P2P) and qualitatively and quantitatively analyzed its denoising behavior on the 1D spectrum and 2D image. We found that the high-performance denoising originates from the trade-off balance between the loss function and regularization in the denoising module, where regularization is the switch of denoising. Meanwhile, the signal extraction is mainly from the self-supervised characteristic learning in the data augmentation module. Further, the lightweight P2P improved the denoising speed by at least ten times but with little performance loss, compared with that of the current N2N-based algorithms. In general, the visualization of P2P provides a reference for revealing the working function of zero-shot N2N-based algorithms, which would pave the way for the application of these algorithms toward real-time (in situ, in vivo, and operando) research improving both temporal and spatial resolutions. The P2P is open-source at https://github.com/3331822w/Peak2Peakand will be accessible online access at https://ramancloud.xmu.edu.cn/tutorial.

10.
Chem Soc Rev ; 53(4): 1892-1914, 2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38230701

ABSTRACT

Molecular assembly is the process of organizing individual molecules into larger structures and complex systems. The self-assembly approach is predominantly utilized in creating artificial molecular assemblies, and was believed to be the primary mode of molecular assembly in living organisms as well. However, it has been shown that the assembly of many biological complexes is "catalysed" by other molecules, rather than relying solely on self-assembly. In this review, we summarize these catalysed-assembly (catassembly) phenomena in living organisms and systematically analyse their mechanisms. We then expand on these phenomena and discuss related concepts, including catalysed-disassembly and catalysed-reassembly. Catassembly proves to be an efficient and highly selective strategy for synergistically controlling and manipulating various noncovalent interactions, especially in hierarchical molecular assemblies. Overreliance on self-assembly may, to some extent, hinder the advancement of artificial molecular assembly with powerful features. Furthermore, inspired by the biological catassembly phenomena, we propose guidelines for designing artificial catassembly systems and developing characterization and theoretical methods, and review pioneering works along this new direction. Overall, this approach may broaden and deepen our understanding of molecular assembly, enabling the construction and control of intelligent assembly systems with advanced functionality.

11.
J Am Chem Soc ; 146(3): 2227-2236, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38224553

ABSTRACT

Charged microdroplets offer novel electrochemical environments, distinct from traditional solid-liquid or solid-liquid-gas interfaces, due to the intense electric fields at liquid-gas interfaces. In this study, we propose that charged microdroplets serve as microelectrochemical cells (MECs), enabling unique electrochemical reactions at the gas-liquid interface. Using electrospray-generated microdroplets, we achieved multielectron CO2 reduction and C-C coupling to synthesize ethanol using molecular catalysts. These catalysts effectively harness and relay electrons, enhancing the longevity of solvated electrons and enabling multielectron reactions. Importantly, we revealed the intrinsic relationship between the size and charge density of a MEC and its reaction selectivity. Employing in situ mass spectrometry, we identified reaction intermediates (molecular catalyst adducts with HCOO) and oxidation products, elucidating the CO2 reduction mechanism and the comprehensive reaction procedure. Our research underscores the promising role of charged microdroplets in pioneering new electrochemical systems.

12.
Langmuir ; 40(2): 1305-1315, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38164750

ABSTRACT

Surface-enhanced Raman spectroscopy (SERS) has been demonstrated as an ultrasensitive tool for various molecules. However, for the negatively charged molecules, the widely used SERS substrate [negatively charged Ag and Au nanoparticles (Ag or Au NPs (-)] showed either low sensitivity or poor stability. The best solution is to synthesize positively charged silver or gold nanoparticles [Ag or Au NPs (+)] with high stability and excellent SERS performance, which are currently unavailable. To this end, we revitalized the strategy of "charge reversal and seed growth". By selection of ascorbic acid as the reductant and surfactant, the surface charge of Ag or Au NP (-) seeds is adjusted to a balanced state, where the surface charge is negative enough to satisfy the stabilization of the NPs (-) but does not hinder the subsequent charge reversal. By optimization of the chain length and electric charge of polyamine molecules, the highly stable and size-controllable uniform Ag NPs (+) and Au NPs (+) were seed-growth synthesized with high reproducibility. More importantly, the SERS performance of both Ag NPs (+) and Au NPs (+) achieved the trace detection of negatively charged molecules at the level of 1 µg/L, demonstrating an improved SERS sensitivity of up to 3 orders of magnitude compared to the previously reported sensitivity. Promisingly, the introduction of polyamine-capped Ag NPs (+) and Au NPs (+) as SERS substrates with high stability (1 year shelf life) will significantly broaden the application of SERS.

13.
Chem Commun (Camb) ; 60(8): 980-983, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38165770

ABSTRACT

Charged microdroplets are favored in microfluidic control, biomedicine, chemistry and materials processing due to their unique physicochemical environment, including interface double layers, high electric fields, surface concentration enrichment, and more. Herein, we investigated the crystallization of charged sodium chloride microdroplets and achieved the formation of hollow single crystals in a single-step process lasting only a few seconds, without the use of templates. Additionally, we discussed the plausible crystal growth mechanism, which appears to be an unconventional outward-inward growth process.

14.
Angew Chem Int Ed Engl ; 62(52): e202314537, 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-37966039

ABSTRACT

In nature and technologies, many chemical reactions occur at interfaces with dimensions approaching that of a single reacting species in nano- and angstrom-scale. Mechanisms governing reactions at this ultimately small spatial regime remain poorly explored because of challenges to controllably fabricate required devices and assess their performance in experiment. Here we report how efficiency of electrochemical reactions evolves for electrodes that range from just one atom in thickness to sizes comparable with and exceeding hydration diameters of reactant species. The electrodes are made by encapsulating graphene and its multilayers within insulating crystals so that only graphene edges remain exposed and partake in reactions. We find that limiting current densities characterizing electrochemical reactions exhibit a pronounced size effect if reactant's hydration diameter becomes commensurable with electrodes' thickness. An unexpected blockade effect is further revealed from electrodes smaller than reactants, where incoming reactants are blocked by those adsorbed temporarily at the atomically narrow interfaces. The demonstrated angstrom-scale electrochemistry offers a venue for studies of interfacial behaviors at the true molecular scale.

15.
J Phys Chem Lett ; 14(43): 9539-9547, 2023 Nov 02.
Article in English | MEDLINE | ID: mdl-37856238

ABSTRACT

Stereoelectronic effects in single-molecule junctions have been widely utilized to achieve a molecular switch, but high-efficiency and reproducible switching remain challenging. Here, we demonstrate that there are three stable intramolecular conformations in the 9,10-diphenyl-9,10-methanoanthracen-11-one (DPMAO) systems due to steric effect. Interestingly, different electronic coupling approaches including weak coupling (through-space), decoupling, and strong coupling (through-bond) between two terminal benzene rings are accomplished in the three stable conformations, respectively. Theoretical calculations show that the molecular conductance of three stable conformations differs by more than 1 order of magnitude. Furthermore, the populations of the three stable conformations are highly dependent on the solvent effect and the external electric field. Therefore, an excellent molecular switch can be achieved using the DPMAO molecule junctions and external stimuli. Our findings reveal that modulating intramolecular electronic coupling approaches may be a useful manner to enable molecular switches with high switching ratios. This opens up a new route for building high-efficiency molecular switches in single-molecular junctions.

16.
J Am Chem Soc ; 145(32): 17795-17804, 2023 Aug 16.
Article in English | MEDLINE | ID: mdl-37527407

ABSTRACT

The manipulation of chirality in molecular entities that rapidly interconvert between enantiomeric forms is challenging, particularly at the supramolecular level. Advances in controlling such dynamic stereochemical systems offer opportunities to understand chiral symmetry breaking and homochirality. Herein, we report the synthesis of a face-rotating tetrahedron (FRT), an organic molecular cage composed of tridurylborane facial units that undergo stereomutations between enantiomeric trefoil propeller-like conformations. After resolution, we show that the racemization barrier of the enantiopure FRT can be regulated in situ through the reversible binding of fluoride anions onto the tridurylborane moieties. Furthermore, the addition of an enantiopure phenylethanol to the FRT can effectively induce chirality of the molecular cage by preferentially binding to one of its enantiomeric conformers. This study presents a new paradigm for controlling dynamic chirality in supramolecular systems, which may have implications for asymmetric synthesis and dynamic stereochemistry.

17.
Anal Chem ; 95(35): 13346-13352, 2023 Sep 05.
Article in English | MEDLINE | ID: mdl-37611317

ABSTRACT

Reagent purity is crucial to experimental research, considering that the ignorance of ultratrace impurities may induce wrong conclusions in either revealing the reaction nature or qualifying the target. Specifically, in the field of surface science, the strong interaction between the impurity and the surface will bring a non-negligible negative effect. Surface-enhanced Raman spectroscopy (SERS) is a highly surface-sensitive technique, providing fingerprint identification and near-single molecule sensitivity. In the SERS analysis of trace chloromethyl diethyl phosphate (DECMP), we figured out that the SERS performance of DECMP is significantly distorted by the trace impurities from DECMP. With the aid of gas chromatography-based techniques, one strongly interfering impurity (2,2-dichloro-N,N-dimethylacetamide), the byproduct during the synthesis of DECMP, was confirmed. Furthermore, the nonignorable interference of impurities on the SERS measurement of NaBr, NaI, or sulfadiazine was also observed. The generality ignited us to refresh and consolidate the guideline for the reliable SERS qualitative analysis, by which the potential misleading brought by ultratrace impurities, especially those strongly adsorbed on Au or Ag surfaces, could be well excluded.

18.
Natl Sci Rev ; 10(6): nwad081, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37404853

ABSTRACT

Thermally activated ultrafast diffusion, collision and combination of metal atoms comprise the fundamental processes of synthesizing burgeoning subnanometer metal clusters for diverse applications. However, so far, no method has allowed the kinetically controllable synthesis of subnanometer metal clusters without compromising metal loading. Herein, we have developed, for the first time, a graphene-confined ultrafast radiant heating (GCURH) method for the synthesis of high-loading metal cluster catalysts in microseconds, where the impermeable and flexible graphene acts as a diffusion-constrained nanoreactor for high-temperature reactions. Originating from graphene-mediated ultrafast and efficient laser-to-thermal conversion, the GCURH method is capable of providing a record-high heating and cooling rate of ∼109°C/s and a peak temperature above 2000°C, and the diffusion of thermally activated atoms is spatially limited within the confinement of the graphene nanoreactor. As a result, due to the kinetics-dominant and diffusion-constrained condition provided by GCURH, subnanometer Co cluster catalysts with high metal loading up to 27.1 wt% have been synthesized by pyrolyzing a Co-based metal-organic framework (MOF) in microseconds, representing one of the highest size-loading combinations and the quickest rate for MOF pyrolysis in the reported literature. The obtained Co cluster catalyst not only exhibits an extraordinary activity similar to that of most modern multicomponent noble metal counterparts in the electrocatalytic oxygen evolution reaction, but is also highly convenient for catalyst recycling and refining due to its single metal component. Such a novel GCURH technique paves the way for the kinetically regulated, limited diffusion distance of thermally activated atoms, which in turn provides enormous opportunities for the development of sophisticated and environmentally sustainable metal cluster catalysts.

19.
Anal Chem ; 95(31): 11613-11620, 2023 Aug 08.
Article in English | MEDLINE | ID: mdl-37488664

ABSTRACT

Utilizing para-hydrogen (p-H2)-induced hyperpolarization to increase the sensitivity of nuclear magnetic resonance, especially signal amplification by reversible exchange (SABRE), has been widely studied. Here, we achieved hyperpolarization of exchangeable protons in methanol-d4 by introducing dynamic covalent bonds as reversible exchange following the SABRE process. To release the hyperpolarized CD3OH, the pyridine-based ligands with aldehyde groups underwent acetal exchange between the aldehyde and hydroxyl groups of CD3OH after being first hyperpolarized by SABRE. Our mechanistic study highlights the importance of the reversible exchange of functional groups and chemical kinetics in realizing hyperpolarization of exchangeable protons in methanol-d4. Our work broadens SABRE's chemical system compatibility and possible applications.

20.
Angew Chem Int Ed Engl ; 62(45): e202307086, 2023 Nov 06.
Article in English | MEDLINE | ID: mdl-37475578

ABSTRACT

Synthesis of formate from hydrogenation of carbon dioxide (CO2 ) is an atom-economic reaction but is confronted with challenges in developing high-performance non-precious metal catalysts for application of the process. Herein, we report a highly durable edge-rich molybdenum disulfide (MoS2 ) catalyst for CO2 hydrogenation to formate at 200 °C, which delivers a high selectivity of over 99 % with a superior turnover frequency of 780.7 h-1 surpassing those of previously reported non-precious metal catalysts. Multiple experimental characterization techniques combined with theoretical calculations reveal that sulfur vacancies at MoS2 edges are the active sites and the selective production of formate is enabled via a completely new water-mediated hydrogenation mechanism, in which surface OH* and H* species in dynamic equilibrium with water serve as moderate hydrogenating agents for CO2 with residual O* reduced by hydrogen. This study provides a new route for developing low-cost high-performance catalysts for CO2 hydrogenation to formate.

SELECTION OF CITATIONS
SEARCH DETAIL
...